Graph Layout Algorithms in Small Wide World

Joel R. Voss

Abstract

Small Wide World is open source graph visualization software designed
to make writing algorithms fast and easy to test. It is written in Python,
JavaScript, and C++ to combine the ease of programming of scripting
languages and the speed of native languages. Many algorithms currently
exist to layout graphs, but they come up short in various use cases. Small
Wide World provides a handful of cheap layout algorithms as well as local
and global minimization algorithms to improve the quality of graph layout.

Contents

1 Small Wide World

1.1 Introduction.
1.2 The Small Wide World Potential (Vspmauwidewortd) - - « « « « - -
1.3 Branch Sort

1.3.1 Metropolis
1.4 Loop Sort
1.5 Grid Sort Lo
1.6 Lattice Sort
1.7 Spiral Sort
1.8 Right Loop Sort Lo
1.9 Fruchterman-Reingold Sort (Force-Directed Placement)
1.10 Future work Lo

References

co W NN

18
20
25
27
29
32
33
36

39

1 Small Wide World

1.1 Introduction

Small Wide World presents an effective method of algorithm development and
analysis for graph visualization. It was designed to make writing algorithms
fast and easy to test. Many algorithms currently exist to layout graphs, but
they come up short in various use cases. Small Wide World provides a handful
of cheap layout algorithms as well as local and global minimization algorithms
(L-BFGS-B, Metropolis Monte-carlo, and basin-hopping) to improve the quality
of graph layout. As in literature, a graph is a set of vertices V' connected by a set
of edges E [1]. This paper uses the term node in place of verticies almost always
because it was used in Dijkstra’s 1959 paper on graphs [2] and is in common
parlance. Small Wide World also uses the term network to describe the actual
reason for creating a graph (i.e. social network) and the term map to describe
the frame and the graph together.

Small Wide World is extensible and exists in its current form because writing
and testing algorithms is made easy. The later algorithms described in this paper
took less than 1 day to write. Debugging, testing, and evaluating the algorithms
took much more time than getting a first prototype. This ease of prototyping
will allow machine learning techniques to improve the state of the art in graph
layout. These advances if written generally enough may be portable to molecular
modeling as well as other similar problems.

Molecular modeling is more concerned with accurate models because many pro-
teins will minimize when an appropriate model is chosen and global minimization
is applied [3][4]. This is a reasonably fast and simple method, but could be
improved. Local minimization runtime can be improved by providing values
closer to the global minima. This value is shared with graph minimization,
in fact graph minimization doesn’t care about accurate models because there
are often local minima that satisfy the requirements of the user. Since global
minimization is far slower than local minimization, graphs can be though of as
an easier problem than molecular modeling. The main reason for graphs with a
large number of nodes being ugly is that global optimization is currently not
solvable in polynomial time. If users were more patient and electricity was free,
algorithms could be employed to ensure high quality graphs over a long period of
time. Another reason for ugly graphs is that dynamic layout algorithms and local
minimization algorithms are slow when working with a large number of nodes.
Algorithms written for graph layout address the speed issue but at the cost of
quality. If an algorithm was designed that was fast and also high quality (low
potential energy computed by an effective cost function), graph layout would
be a solved problem. This paper intends to start the work toward that goal by
solving a large subset of small graphs (<100 nodes) and provide a library to
make incremental progress on the complete set of graphs.

1.2 The Small Wide World Potential (Vs,uwideworid)

Small Wide World uses a potential energy calculation which was designed for
molecular modeling because it is intended to educate users how molecules look
in their optimized state [5][6]. In molecular modeling literature, this function
is referred to as a force field. The potential energy calculation works well for
graphs in many respects. It prefers bonds angles to be as spread out as possible
and it prefers non-bonded nodes at a distance ry (which is configurable, but
set to 40 pixels in Small Wide World by default). As bonded or non-bonded
nodes get closer, the potential becomes higher and beyond the sweet spot by
(configurable also, but set to 40 pixels in Small Wide World), potentials also
grow rapidly. Non-bonded nodes have very little penalty being far away while
bonded nodes have a very high potential far away from the ideal bond length.
Bonded potentials are handled by the harmonic potential (a parabola with
minimum at b = by seen in Figure 1) [6]. Non-bonded potentials are handled by
the Lennard-Jones potential [6]. The Lennard-Jones potential has minima of
—scale__factor at r=ry and curves toward infinity as it approaches 0. Figure 2
shows the Lennard Jones Potential as found in Small Wide World. In Small Wide
World, scale_ factor is configurable, but is set to 0.055. The Lennard-Jones
potential crosses 0 at 35.636 pixels. It is possible that a different potential
would produce more reasonable graphs, but that is a research project for the
future. One of the most important parts of the potential is the speed. The Small
Wide World potential is approximately O(n?) operations due to the non-bonded
potential. The Small Wide World potential was run on a set of random graphs
and the timing was measured. With x being the number of nodes in the graph,
a fit to Az? + B resulted in parameters A = 5.0e-8 and B = 2.6e-6 on a single
core Intel Core i7 3700K @3.5GHz. A graph can be found in Figure 3. For
clarity, these results predict that the Small Wide World potential should take 1
second for a graph with 4448 nodes. Due to overhead, the Small Wide World
performs worse on such a graph (~1.24 seconds).

Harmonic Potential

Vir(b) = A * (b —bg)? (1)

Angular Harmonic Potential

VAH(Q):AAH*(Q—Q())Q (2)

Lennard-Jones 6-12 Potential

Apy = 2% (r§) * scale__factor (3)

Bry= (réQ) * scale__factor (4)

Potential (arbitrary magnitude)

1600

1400

fary
N
o
o

1000

800

600

400

200

T

T

10

20 30 40 50
distance (pixels)

Figure 1: Harmonic Potential

60

70

80

r
1 1
ALs (r00t6) = Br (W) (6)
Ars L (7)
Br; rootS
B
root’ = TZ (8)
12 l t
rootS — (r$?) * scale__factor)

2% (r§) * scale_ factor

root® = 0.5 % rg (10)

root = V0.5 x rg (11)

root = 35.6 (12)

Equations 6-12 give us a value for where the V7 ;(r) equation crosses zero when
ro = 40.

gnuplot> f(x) = Axxxx + B*x

gnuplot> A=1

gnuplot> B=1

gnuplot> fit f(x) ’sww_speedl.dat’ using 1:3 via A, B

A = 5.01617e-08 +/- 1.23e-10 (0.2452%)
B = 2.61209e-06 +/- 3.548e-08 (1.358%)

The Small Wide World potential is a good cost function for a minimization
algorithm. Drawbacks include speed, the existence of a large number of local
minima on complex graphs, and the deviation from realistic potential outside a
small range. Advantages include continuous functions inside the necessary range,
similarity to implementations of molecular potentials in molecular modeling
software, reasonably easy derivative computation, guaranteed solutions for simple
graphs, no penalty for unconnected nodes beyond the minimum distance, finite
values over a large space represented with 32-bit or 64-bit floats, and ease of
programming and understanding.

Potential (arbitrary magnitude)

0.25 r r r r r r T

0.20+

0.15f

0.10 |

0.05F

0.00 +

—-0.05

-0.10 L L L L L L L

30 35 40 45 50 55 60 65
distance (pixels)

Figure 2: Lennard-Jones 6-12 Potential

70

Seconds

0.01

0.009

0.008

0.007

0.006

0.005

0.004

0.003

0.002

0.001

T
fix)

'sww_speedl.dat' using 1:3 x

Nodes

Figure 3: VSmallWideWorld Speed

A following paper in development will discuss the derivitive of the Small Wide
World potential and its possibility to improve graph layout algorithms. Unfortu-
nately, solving for minima in large graphs is a significantly more difficult problem
than minimization of small graphs.

This paper concerns six cheap algorithms for 2-dimensional graph layout using
a potential function. The goal of these algorithms is to produce low potential
configurations at a lower cost than known algorithms. All six algorithms are
deterministic and not guaranteed to find optimal solutions. Instead they intend
to provide good solutions to a common subset of graphs in a very short amount of
time and to provide lower potentials on the full set of graphs. Their correctness
or incorrectness can be easily checked by potential energy computation. I am
testing these algorithms against naive algorithms' as well as popular and ergodic
algorithms (algorithms guaranteed to find global minima given enough time) to
ensure that the algorithms perform better than slower and faster algorithms for
a great many common graphs. These algorithms fit a different niche than local
optimization algorithms and global optimization algorithms, but can be made
more similar at a cost. The main benefit of these algorithms is that unlike global
optimization algorithms, they can be run in polynomial time and are fast. The
first algorithm is Branch sort, the second algorithm is Loop sort, the third is
Grid sort, the fourth is Lattice sort, the fifth is Spiral sort, and the last is Right
Loop sort. Right Loop sort is the best in most cases but Loop sort, Grid sort,
Lattice sort, Spiral sort, and Branch sort produce lower potentials for certain
graphs. In the cases of Lattice sort and Spiral sort, both are naive algorithms
that were not expected to work well, but each produce the best layout more
often than Branch sort. This is likely due to Branch sort’s weakness on large
complex graphs (12-210 nodes, 13-270 edges) on which these algorithms are
being tested. Testing these algorithms against small or simple graphs would be
far less interesting because cheap algorithms can provide optimal solutions as
does local minimization with random initial placement.

1.3 Branch Sort

Branch sort is a simple algorithm in Small Wide World which picks locations for
nodes in a graph assuming that all nodes are connected in a star configuration
with no loops. To achieve this, it counts a node’s connections and picks locations
for neighboring nodes using trigonometry, creating regular stars. To decide which
node to place first, Branch sort uses a simple constraint that one neighboring
node be known at the time of its placement. For loops, this falls through, so
branch has a second mode where it accepts placement if more neighbors are not
known. This works well with many simple graphs. Larger graphs and certain
simple graphs have overlaps that cause the graphs to be unoptimized. This

My definition of a naive algorithm in this context may differ from other definitions, it is
meant to convey that the algorithm does not take into account connections during its operation
except for the backbone.

Seconds

100

80

60

40

20

T
Branch

Grid « ’
Spiral . *
Lattice L °
Linear ‘

Loop

Right

Random
Fructerman Reingold

Nodes

Figure 4: Algorithm Speed

causes branch to fail local optimization. One workaround used sparingly during
testing is to add a small amount of randomization to the graph so that no node
lays on top of one another. Besides this weakness, graphs with loops are poorly
optimized by the Branch sort algorithm. One of the main benefits of branch
sort is its speed. Since it is approximately 500-4000 times faster than local
minimization with L-BFGS-B (using SciPy which uses Fortran underneath and
C++)[7][8][9], it can be run with practically no downside.[10]?

In tests of small graphs, Branch sort improves the speed of L-BFGS-B local
minimization considerably over random or naive placement of nodes (such as
linear, lattice, or spiral placement) in many cases. For larger graphs, Branch
sort is less useful but still provides some benefit due to nodes on the backbone
being placed at the correct distance from one another. Graphs in this paper that
discuss speed will be comparing the speed of local optimization using L-BFGS-B
after the algorithm was used. A lower speed does not always represent a better
algorithm, it just shows that the algorithm produced a configuration close to
the local minima. Similarly, tables and graphs that compare potential will often
compare potential after local minimization to show the quality of the minima
found.

Algorithm comparison Comparator Result
Branch better than Lattice 3.717%
Branch 2x better than Lattice 2.834%
Branch 3x better than Lattice 2.200%
Branch 4x better than Lattice 1.934%
Branch 5x better than Lattice 1.784%
Branch 6x better than Lattice 1.717%
Lattice better than Branch 96.283%
Lattice 2x better than Branch 95.366%
Lattice 3x better than Branch 94.882%
Lattice 4x better than Branch 94.616%
Lattice 5x better than Branch 94.516%
Lattice 6x better than Branch 94.416%

Branch sort will only place a node when it knows at least one of its neighbor’s
positions except for the first node. This decision makes it possible to set a
group of nodes to known and let Branch sort solve branches off that group. It
doesn’t take into account neighbors nodes, so it will often pick incorrectly which
direction to place a branch. This appears to be inevitable without sacrificing
speed, so modifications to this algorithm will create different algorithms that
trade speed for accuracy and optimization. When thinking about graph layout,
it is often more important that the algorithm be fast than accurate since basin-

2Local minimization can be much slower than Branch sort or possibly just as fast if the
initial position is close to a minima. In reality, random initial position causes local minimization
to be orders of magnitude slower than Branch sort, on the order of 1000-1000000 times slower.

10

Seconds

100

80

60

40

20

Branch

* +
b‘ . -t 3
* . . o
gy
. . R X
. PP T] .
gt et .
. 1 3 ADE 2SR NPT
QTS 73 kN A SIS .
e aeretit e e P goy
60 80 100 120 140
Nodes

Figure 5: Branch Sort Speed

11

Seconds

100

60

40

20

Random *
Branch =

Nodes

Figure 6: Branch Sort vs Random Local Minimization Time

12

Seconds

100

T T
Fructerman Reingald
Branch

220

Figure 7: Branch Sort vs Fruchterman-Reingold Local Minimization Time

13

hopping with L-BFGS-B can solve many problems accurately given enough time
[11][12][13][14]. As mentioned before, the closer a configuration is to the global
minimum, the quicker local minimization (i.e. L-BFGS-B) will find it. Thus it
is only important to save CPU time over the basin-hopping algorithm if your
user is waiting for it or if you are dealing with a large number of inputs (such as
machine learning, molecular modeling, and brute force graph research). The end
goal is certainly to find the global minimum (or a point on a slope toward it)
quickly and in polynomial time, but this goal is surprisingly difficult for complex
graphs. It is trivial for simple graphs. However, social networks that have dense
networks can also benefit from branch sort, see Figure 13. While Grid sort
will normally perform better than Branch sort, Branch sort provides a lower
potential which speeds up local minimization.

® node 7
node 10
L & =)
node 2
node 12 node &
e d L
. node 0 node 9
node 5
@ node 1
® hode 11
o @ node 3
node 8
¥ hode 6

Figure 8: Graph with 13 nodes, 12 edges Branch sort local minimum

It is very common for graphs to have a large number of inputs, but to also
have an overarching theme. Social networks are often very densely connected,
which means Branch sort and Loop sort are poor choices for optimization. Right
Loop sort may be a reasonable choice for social networks. Networks based on
computer data networks are not often looped, so branch sort makes more sense.
Networks based on x86 assembly branching and looping are very regular, so
right loop and specialized algorithms will work better than Branch sort or Loop
sort. Certain logic graphs (e.g. state machine graphs and dependency graphs)

14

node 10

node 7

node 13

node 12

Figure 9: Graph with 15 nodes, 14 edges Branch sort local minimum

15

Figure 10: Graph with 45 nodes, 50 edges Branch sort local minimum

16

ub

R A

& \ R
T A,

o

ﬁ"
A

Figure 11: Graph with 89 nodes, 116 edges Branch sort near local minimum

Figure 12: Graph with 148 nodes, 159 edges Branch sort near local minimum

17

node 4
! B node 5

node 3(‘ Node 03 node 6
[9
node 2 node 1

Figure 13: Dense Graph with 7 nodes, 16 edges Branch sort

are best handled by a unidirectional optimized graph algorithms like Right Loop
sort. Constraint graphs can also be solved with Right Loop sort depending on
its complexity. Loop sort can produce reasonable solutions for a certain set of
simple flow graphs and constraint graphs. Graphviz’s dot has been commonly
used for x86 assembly graphs, logic graphs, and social network graphs, and uses
an algorithm similar to Right Loop sort. Branch sort makes more sense for
chemical bond networks such as hydrocarbons. Loop sort makes more sense for
chemical bond networks such as proteins and aromatic molecules. While Loop
sort is not yet ready to take on complex structures, more work will eventually
be done to improve its quality. Since chemical bond networks are almost always
3-dimensional, 3d versions of the algorithms will have to be developed to move
past the initial proof of concept phase which deals with 2d graphs.

1.3.1 Metropolis

The Metropolis Monte-carlo algorithm is a naive global optimization algorithm
[15][16]. It has been used for decades to minimize chemical structures[17][18][19].
Its main weakness is that it requires unnecessarily large amount of computational
power to get past high potential barriers near local minima. Small Wide World
provides an intuitive interface to run Metropolis Monte-carlo. Attempting
Metropolis Monte-carlo algorithm for 10 seconds (15k rounds on a single core
with 55 nodes and 59 edges, 19k rounds with 45 nodes and 59 edges) provides a
good comparison for the efficiency of the algorithm. While I haven’t tuned the
Metropolis Monte-carlo algorithm for this problem, a factor of 1000 in time is
probably enough to provide a reasonable margin of error in my test with 12-70
nodes and 12-80 edges. 644 graphs were tested.

On average, Branch sort took 0.002 seconds.
On average, Metropolis took 10.004 seconds (5000 times longer).

Algorithm comparison Comparator Result

Branch better than Metropolis 0.311%

18

Algorithm comparison Comparator Result

Branch 2x better than Metropolis 0.0%
Metropolis better than Branch 99.689%
Metropolis 2x better than Branch 98.137%
Metropolis 3x better than Branch 96.429%
Metropolis 4x better than Branch 94.410%
Metropolis 5x better than Branch 93.012%
Metropolis 6x better than Branch 91.460%
Metropolis 10x better than Branch 88.509%
Metropolis 100x better than Branch 78.416%
Metropolis 200x better than Branch 77.484%
Metropolis 1000x better than Branch 76.553%
Metropolis 10000x better than Branch 74.379%
Metropolis 100000x better than Branch 71.739%
Metropolis 1000000x better than Branch 66.770%
Metropolis 10000000x better than Branch 61.180%
Metropolis 100000000x better than Branch 56.211%

This graph shows that Metropolis for 10 seconds beats Branch significantly as
you might expect if you have used Metropolis Monte-carlo and Branch sort. This
test allows us to consider how much more effective it would be to use Metropolis
than any of the algorithms presented here.

A limitation of Loop sort and Branch sort are that they have modes of failure
that are far worse than 1 second of Metropolis Monte-carlo. This provides us
with a reasonable solution: run a tuned Metropolis Monte-carlo algorithm on
any result from Loop sort or Branch sort which is higher than a certain value.
Branch being one of the least effective algorithms, it is an excellent example of
Metropolis being used to improve the quality of a map given a layout algorithm
as a starting point instead of random placement. In this second test, I am
performing the same test but after Branch sort, I am running 0.2 seconds of
Metropolis. This choice of timing allows us to make an assumption about a
realistic scenario where maps must be rendered in less than a second. 488 graphs
were tested.

On average, Branch sort + 0.2 seconds of Metropolis (BranchM) took 0.205
seconds.
On average, Metropolis took 10.004 seconds.

Algorithm comparison Comparator Result
BranchM better than Metropolis 10.959%
BranchM 2x better than Metropolis 2.055%
Metropolis better than BranchM 89.041%

Metropolis 2x better than BranchM 56.164%
Metropolis 3x better than BranchM 32.877%

19

Algorithm comparison Comparator Result
Metropolis 4x better than BranchM 13.014%
Metropolis 5x better than BranchM 9.589%
Metropolis 6x better than BranchM 5.479%
Metropolis ~ 10x better than BranchM 1.370%
Metropolis 100x better than BranchM 0.000%

This experiment requires a control. To control properly, I randomized the output
and ran Metropolis for 0.2 seconds. 285 graphs were tested.

Algorithm comparison Comparator Result
Metropolis better than Metropolis(0.2) 100.000%
Metropolis 2x better than Metropolis(0.2) 99.298%
Metropolis 3x better than Metropolis(0.2) 97.544%
Metropolis 4x better than Metropolis(0.2) 95.439%
Metropolis 5x better than Metropolis(0.2) 89.123%
Metropolis 6x better than Metropolis(0.2) 81.754%
Metropolis ~ 10x better than Metropolis(0.2) 55.439%
Metropolis 100x better than Metropolis(0.2) 0.000%

This result shows that 10 seconds of Metropolis is still better than Branch + 0.2
seconds of Metropolis (BranchM) in 89% of cases, but surprisingly that bias falls
off quickly after 2x. Comparing with the control which does not fall off rapidly
until 10x, this shows that the Branch sort algorithm can improve the quality of
Metropolis over random initial placement of nodes.

Metropolis Monte-carlo can be run for a long amount of time with no large
detriment to the end result potential energy. While most Metropolis Monte-
carlo solutions look worse than Loop sort and Branch sort solutions, potential
is generally more valuable than aesthetics in graph layout. For many uses,
aesthetics is more important than potential, so this should be considered a
benefit of these algorithms.

1.4 Loop Sort

Loop sort is a more complex algorithm with the second best performance in
the tests. It contains many constraint solving algorithms and uses concepts
that humans employ when working with graphs containing loops. Its last step
is to run the Branch sort on any nodes not handled by the Loop sort, which
means that Branch sort is a prerequisite of Loop sort. Other algorithms could
be substituted, but it must be capable of running on a subset of nodes using
a set of givens to produce correct results. The first step of Loop sort is Linear

20

sort, the naive algorithm of placing all nodes on the X axis using the backbone.
Linear sort is done cheaply with polar coordinates which has the drawback of
placing some nodes in the same place. This organization of nodes on the x axis
allows a simple function to group nodes together. The second step of Loop sort
is to group nodes. This simple algorithm uses position on the x axis to decide
whether a group can be made out of a subset of nodes in the graph. It does
this by first querying the position of connected nodes. If there are no connected
nodes to the left, it must be a left bracket (See Figure 14 for illustration of the
grouping concept). If there are no connected nodes to the right, it must be a
right bracket. If a node only has one connection, it is in a group by itself — a
leaf node. If a node has only one connection to the left and multiple to the
right, it is possibly a left bracket. We can check whether any nodes on its left
(unconnected and connected) are connected with any nodes on its right. If any
are connected, then it is part of a group. If none are connected, then it is a left
bracket. If a node has only one connection to the right and multiple to the left,
it is possibly a right bracket. Since right brackets aren’t used in loop sort at the
moment, we ignore this. In the future, it may be desirable to use right brackets
for some purpose. For optimization, the current group is kept in memory to
reduce the number of groups needed to be searched.

node 2

leaf 1 left bracket leaf 2

right bracket

node 3

Figure 14: Grouping with Linear Sort Part 1

Loop sort is much slower and more complex than Branch sort, but provides
much higher quality solutions with low potentials and high reliability. As its
name suggests, Loop sort was designed to find small loops and create a regular
polygon from the nodes. It does this by sorting the nodes linearally (based on
their connections) and finding which nodes are groups. A group is defined by
having only single connections to other nodes. This is explained in Figure 14 and
15. An example of a group would be {left bracket, node 2, node 3, right bracket}
or any of the nodes in Figure 15. This works especially well on chemical-style
networks because of their simplicity (most elements will not bond to more than 3
atoms, the carbon group being a notable exception: carbon, silicon, germanium,
tin, and lead).

21

Loop sort is not yet fully tested and has several weaknesses. Loop sort is
especially bad at dense networks due to bugs in routing, grouping, and basic
design. Loop sort also doesn’t work on many graphs with complex branching.
As improvements are made, Loop sort may eventually be able to solve all
manner of graphs, providing a certain solution to graph layout without any
local optimization or long processing required. Loop sort is by far the slowest
algorithm and performs far worse on large graphs owing to the numerous high
complexity functions that are needed to deal with the complexity of all possible
graphs.

Figure 16 and 17 show two complex graphs that Loop sort produced the lowest
local minima. Both graphs are solvable by humans and global optimization
software in a reasonable amount of time given the local minima found by Loop
sort.

group group
leaf wour’ leaf
group

Figure 15: Grouping with Linear Sort Part 2

Algorithm comparison Comparator Result
Loop better than Lattice 38.540%
Loop 2x better than Lattice 29.838%
Loop 3x better than Lattice 25.138%
Loop 4x better than Lattice 21.870%
Loop 5x better than Lattice 19.970%
Loop 6x better than Lattice 18.370%
Lattice better than Loop 61.460%
Lattice 2x better than Loop 55.743%
Lattice 3x better than Loop 53.259%
Lattice 4x better than Loop 52.125%
Lattice 5x better than Loop 51.575%
Lattice 6x better than Loop 51.125%

22

Figure 16: Graph with 45 nodes, 48 edges Loop Sort local minimum

Figure 17: Graph with 188 nodes, 188 edges Loop Sort local minimum

23

Seconds

100

80

60

40

20

Loop

* .
o ‘e *
. *
. N N E2SSRN
. " .o . DR 3,
R Wt o e S A s o |
. RN . - e B8

S A T
R SRR
8" g 00T Bl M

Sies gL i

1R . . .t eatuns ! ot

60 80 100 120 140 160 180 200 220

Nodes

Figure 18: Loop Sort Speed

24

1.5 Grid Sort

Grid sort is a complex algorithm with the third best performance of the six
algorithms. Unlike Loop sort, it does not depend on any other algorithm. Grid
sort creates a 2-dimensional array (a grid) which is extensible in all 4 directions.
The first node is put at (0, 0) and connected nodes are placed in neighboring cells.
Like Branch sort, it uses simple facts about the graph to make good decisions
on where to place nodes. Unlike Branch sort it can query whether a node can
be placed without being too close to another node. This allows Grid sort to
ensure that it never produces a graph with two nodes in the same cell. The most
common problem with Grid sort are loops. To solve this, an expensive function
called rearrangeGrid was created to reduce these large potentials. The function
uses a cached version of the Small Wide World potential (Vsmauwidew oridCache)
to pick the lowest potential given the grid. Improvements can be made to this
algorithm to speed it up and to improve the quality of solutions. The current
setup provides a very good result in many cases at a reasonable cost. Minimized
Grid sort has the lowest potential in 9.8% of test graphs, more than Lattice sort,
Spiral sort, and Branch sort.

One function that has not been fully realized is toGrid which can turn a graph
into a grid. This makes it possible to improve many graphs cheaply. The reason
this is not finished is because there doesn’t yet exist an algorithm to effectively
deal with nodes that are too close together. Instead, as a temporary fix the
function places nodes on top of one another. An algorithm that correctly spread
out nodes would be a significant benefit to Branch sort which commonly places
nodes on top of each other. Once that modification was finished, the resulting
code would look like:

map.sortBranch()
map.toGrid()

Algorithm comparison Comparator Result
Grid better than Lattice 35.056%
Grid 2x better than Lattice 18.103%
Grid 3x better than Lattice 12.969%
Grid 4x better than Lattice 10.518%
Grid 5x better than Lattice 9.268%
Grid 6x better than Lattice 8.435%
Lattice better than Grid 64.944%
Lattice 2x better than Grid 44.824%
Lattice 3x better than Grid 32.289%
Lattice 4x better than Grid 24.671%
Lattice 5x better than Grid 19.570%
Lattice 6x better than Grid 16.469%

25

Figure 19: Graph with 69 nodes, 74 edges Grid sort near local minimum

hc

pb

dc

Figure 20: Graph with 68 nodes, 87 edges Grid sort near local minimum

26

100 T T T T T T T T T T
Grid

80 | . . i

60 . .

Seconds

40 SEP) T

Lwe *
SR IR

0 20 40 60 80 100 120 140 160 180 200 220

Figure 21: Grid Sort Speed

1.6 Lattice Sort

Lattice sort is a fast and simple algorithm with the fourth best performance of
the six algorithms. This is an unexpected result because of its naivety. Lattice
sort creates a grid similar to Grid sort, but offsets each row by b * g = by *0.866.
This forms the basis of a lattice with vectors (bg,0) and (bg * 0.866, bg). This
makes bond lengths from a node to 6 adjacent cells equal to by. Grid sort’s
bond lengths are by for 4 adjacent cells. This is a big deal because it reduces
the potential of 2 diagonally adjacent nodes significantly. The potential of
two connected nodes diagonally in lattice formation is 0. The potential of two
connected nodes diagonally in grid formation is 247 (1% ((by * v/2 — by)?) where
by = 40). Another minor optimization in this algorithm is to layout nodes from
top to bottom back and forth so that any backbone nodes are placed next to
one another. Since finding the backbone of a graph can be done in linear time
using Dijkstra’s algorithm, this optimization is cheap. Lattice configuration
mimics crystal formation which is ordered by lowest potential. Because of its
speed, this algorithm is especially useful for many different graphs. Because it is
naive graphs it produces are of very low quality because many lines are crossed.
This occurs because nodes that are connected are not placed preferentially.
Besides being aesthetically unpleasing and difficult to understand, this affects

27

node 0 nodel
|) o node 2

node 5
PN P node 3

vy

node 4

[© 9
node 6 node 7 node 8

Figure 22: Lattice sort

the functionality. Because lines are crossed, it finds a large number of local
minima, making local minimization far less effective. Figure 31 shows one graph
where local minimization was effective on a result of lattice sort reducing the
potential from 1.02e6 to 2.35e5.

In order to significantly improve the potential in the general case, different
orders must be tested. Because testing different orders costs linearally more than
a single iteration and there are exponential orders, finding better solutions is
difficult. While you might expect this to result in finding the best configuration
in exponential time, this may not be true for the average case. An entire paper
could be dedicated to finding minimum configurations with lattice sort in less
than exponential time, but suffice that it may be true and move on.® This is
similar to the problem faced by Grid sort’s rearrangeGrid, so it has not been
tested rigorously. Future work may involve converting lattices to grids or visa-
versa. It may make sense to combine the two but for now the two together are
quite powerful.

A valuable use for Lattice sort is to give a guaranteed reasonable baseline to test
other algorithms against. Because it is naive and guaranteed to give a solution
that has no overlapping nodes, it can replace Metropolis and random placement
as a baseline for testing (as seen in 1.3.1). Figure 32 shows that indeed lattice
presents a better baseline than random placement in a large number of important
cases especially those with a high number of nodes. Figure 33 shows that random
goes off the graph as the number of nodes increases. This is consistent with
Lattice being a better overall algorithm than random placement.

3 A number of methods to this end make it reasonable to assume that picking random and
non-random lattice configurations will end up in non-exponential time finding of a global
minimum. Using information about the distance between connected nodes is by far the most
beneficial. This information reduces exponential orders by a significant amount. Contraint
solving is an algorithm that could possibly solve the Lattice minimization problem in less than
exponential time. The first algorithm I considered was one where the highest potential nodes
were moved and the rest of the nodes would flow around them. Another reasonable algorithm
to this end is Basin-hopping. It may not solve in polynomial time in every case, but it is often
enough to solve in the average case.

28

Algorithm comparison Comparator Result

Random better than Lattice 2.700%
Random 2x better than Lattice 1.817%
Random 3x better than Lattice 1.700%
Random 4x better than Lattice 1.584%
Random 5x better than Lattice 1.500%
Random 6x better than Lattice 1.467%
Lattice better than Random 97.300%
Lattice 2x better than Random 95.549%
Lattice 3x better than Random 93.699%
Lattice 4x better than Random 92.199%
Lattice 5x better than Random 90.948%
Lattice 6x better than Random 89.982%

100 T T T T T T T T T T
Lattice

80 | . E

60 [. i

Seconds

40

20

220

Figure 23: Lattice Sort Speed

1.7 Spiral Sort

Spiral sort is similar to Lattice sort. It is a fast and simple algorithm with the
fifth best performance in the grid tests with a very similar function to Lattice

29

Figure 24: Linear 12 node graph Spiral sort

sort. Instead of sorting the backbone back and forth in a rhombus, spiral sort
sorts the backbone in a spiral starting at the center and rotating clockwise. Each
node is placed in cardinal direction instead of using trigonometry because it’s
simpler and uses the grid infrastructure available. Minor improvements could be
made to this algorithm by using math to reduce the distance between adjacent
nodes, but this is not a high priority. Spiral sort suffers from a similar problem
to Lattice sort in that it finds local minima. Unlike Lattice sort, the start of
the backbone is placed at the center and the end of the backbone is placed near
the outside. The top of the graph is filled with the backbone while branches
are at the bottom. One would not expect this to be particularly good, but the
packing is better than grid when grid chooses very long bond lengths. Each very
long bond length costs A * dr?, a single diagonal can cost 247 potential. Thus
packing is preferred in a great many cases. The reason Spiral sort has similar
performance to Lattice sort is probably because they have similar positive and
negative attributes. If we were to test 10 random orders of lattice, we should
expect them to also tie with Lattice sort and Spiral sort. The fact that Lattice
sort and Spiral sort have such high performance means that all six algorithms
tested here have considerable weaknesses.

Algorithm comparison Comparator Result
Spiral better than Lattice 52.225%
Spiral 2x better than Lattice 10.752%
Spiral 3x better than Lattice 7.068%
Spiral 4x better than Lattice 5.951%
Spiral 5x better than Lattice 5.318%
Spiral 6x better than Lattice 5.034%
Lattice better than Spiral 47.775%
Lattice 2x better than Spiral 10.602%
Lattice 3x better than Spiral 7.851%
Lattice 4x better than Spiral 6.868%
Lattice 5x better than Spiral 6.418%
Lattice 6x better than Spiral 6.118%

30

Seconds

100

80

60

40

20

Spiral

Figure 25: Spiral Sort Speed

31

220

1.8 Right Loop Sort

The best performing algorithm is the most recent entry, Right Loop sort. It
works well on loops and branches and is biased toward the postive x direction
(the right), which is where it derives its name, Right Loop sort. It is implemented
in 26 lines of Python and uses a breadth first algorithm to choose the position
of nodes. The output of this algorithm is similar to Graphviz’s most popular
algorithm for directed graphs, dot [20]. It starts by putting the first node in
the first column. It then puts all its neighbors in the second column. It then
puts its neighbors’ neighbors that haven’t been placed into the third column. It
continues until all nodes have been placed. One benefit of this design is that it
visualizes Dijkstra’s algorithm [2].

In the case of a ring with 7 nodes it produces the graph found in Figure 20. The
graph has a potential of 85.5. The global minima for this graph found by Loop
sort is 22.53.

node 5 node 4
e~ g d
node 6
node 0 ®
node‘i nEde 2 node 3

Figure 26: Ring with 7 nodes Right Loop Sort

While Loop sort wins against Right Loop sort in simple graphs, Right Loop sort
wins in the vast majority of large complex graphs. While Loop sort was designed
for organic chemistry, Right Loop sort was designed to solve the problem of
complex graphs elegantly. A simple graph that Loop sort is currently unable to
solve elegantly that Right Loop sort can solve reasonably is optimizela_3_16.
Figure 27 shows Loop sort’s solution which contains at least two significant errors
(fd and fg are too short and too long respectively). Figure 28 shows Right Loop
sort’s solution which only has a handful of small errors — cd, ce, df, ef, gh, gj, ji
and kl are too long. Potential computations from the output of the algorithm can
be found in the column labeled Initial in the table below. Potential computations
from the minimized output using L-BFGS-B are found in the Minimized column.
This shows that Right Loop sort, Loop sort, Grid sort, and Spiral sort all find
the global minimum while Lattice sort and Fruchterman-Reingold are both stuck
at a local minima.

Algorithm Initial ~ Minimized
Right Loop 498.87 54.203
Loop 1184.1 54.165

32

Algorithm Initial ~ Minimized
Grid 3650.4 54.193
Spiral 8397.1 54.160
Lattice 963.90 229.16
Fruchterman-Reingold 20271. 183.5

Small Wide World has a fully functional graphical interface in the browser. To
work with the optimizela_3_ 16 graph and all graphs presented in this paper,
visit https://www.small-wide-world.com/paper/graphs/

Algorithm comparison Comparator Result
Right Loop better than Lattice 59.493%
Right Loop 2x better than Lattice 45.308%
Right Loop 3x better than Lattice 39.073%
Right Loop 4x better than Lattice 35.423%
Right Loop 5x better than Lattice 32.705%
Right Loop 6x better than Lattice 30.838%
Lattice better than Right Loop 40.507%
Lattice 2x better than Right Loop 24.604%
Lattice 3x better than Right Loop 16.669%
Lattice 4x better than Right Loop 12.502%
Lattice 5x better than Right Loop 10.052%
Lattice 6x better than Right Loop 8.618%

1.9 Fruchterman-Reingold Sort (Force-Directed Place-
ment)

Fruchterman and Reingold produced a very popular dynamic graph layout
algorithm loosely based on a spring model. It was originally written in 1991 and
continues to be used to this day by software such as Graphviz (fdp and sfdp),
NetworkX, D3.js, Sigma.js, and Linkurious. It is my hope that my research will
convince software developers to use the set of algorithms in Small Wide World
before attempting this expensive algorithm to benefit their users. In this study,
100 rounds of Fruchterman-Reingold was applied to a graph with random layout
and compared against the other algorithms. The winner was chosen in 10000
unminimized graphs and 6000 locally minimized graphs. The results of how
many winners each algorithm produced are below.

33

https://www.small-wide-world.com/paper/graphs/

Seconds

100

80

60

40

20

Right

Figure 29: Right Loop Sort Speed

34

220

Minimized

Count Algorithm
2735 Right Loop
1506 Loop
585 Grid
403 Spiral
365 Lattice
365 Fruchterman-Reingold
35 Branch
6 Random
Unminimized
Count Algorithm
6090 Right Loop
1242 Fruchterman-Reingold
1142 Grid
662 Loop
461 Lattice
357 Spiral
46 Branch

These tables should illustrate that not only is Right Loop a better algorithm
than 100 rounds of Fruchterman-Reingold, but also that each algorithm has
merits. Figure 33 shows a much more important message than these tables —
as the number of nodes increases, Fruchterman-Reingold performs worse than
every other algorithm. While Fruchterman-Reingold performs reasonably well on
graphs with less than 40 nodes, its performance decreases dramatically compared
even to naive algorithms. This means that while Fruchterman-Reingold can
be run for longer on larger or more complex graphs, it cannot compete in the
Potential-computational time efficiency metrics that all algorithms must compete

on.
Algorithm comparison Comparator Result
Fruchterman-Reingold better than Lattice 17.703%
Fruchterman-Reingold 2x better than Lattice 13.986%
Fruchterman-Reingold 3x better than Lattice 11.219%
Fruchterman-Reingold 4x better than Lattice 8.635%
Fruchterman-Reingold 5x better than Lattice 7.251%
Fruchterman-Reingold 6x better than Lattice 6.434%

Lattice

better than
Lattice 2x better than

35

Fruchterman-Reingold 82.297%
Fruchterman-Reingold ~ 78.580%

Algorithm

comparison

Comparator

Result

Lattice
Lattice
Lattice
Lattice

3x better than
4x better than
5x better than
6x better than

Fruchterman-Reingold
Fruchterman-Reingold
Fruchterman-Reingold
Fruchterman-Reingold

76.196%
74.546%
72.845%
71.329%

100

80

Seconds

40

20

T T
Fructerman Reingold

B
ey bR ok 0
?Eg:"

£ .’

1.10 Future work

Figure 30: Fruchterman-Reingold Sort Speed

200 220

Many algorithms will likely result from Small Wide World due to its ease of
development. The most important algorithm will probably be far more complex
than Loop sort or Right Loop sort. Specifically I am looking at modified versions
of Branch sort, Grid sort, Loop sort, and Right Loop sort that incorporate
machine learning. With fast classification algorithms, algorithms could make
good choices on where to place nodes to ensure lowest potential.

A good optimization that would possibly improve the speed of potential calcula-
tion is to use an estimation of density. This could also work with specialized
optimizations of the potential where the algorithm searches for nodes with high
potential energy (see A2 below).

36

Figure 31: Grid with 75 nodes, 85 edges Lattice Sort near local minimum

Figure 32: Algorithms vs Lattice sort

37

Figure 33: Algorithms vs Lattice sort zoomed out

Three possible improvements that could be made involve rethinking the opti-
mization problem. The first improvement would be to consider rewriting the
Metropolis and Basinhopping algorithms to use lattice or grid methods and
cached potentials. A lot of effort is wasted in Metropolis and Basinhopping
algorithms making poor random choices. Time spent in local minimization
(L-BFGS-B) could be greatly reduced by only picking values that provide values
very near by for bond lengths.

Constraint solving is a machine learning technique that can be employed to
improve the quality of graphs. This is a topic of ongoing research, when bond
length is constrained to a small value by known potentials, the search space
(configuration space) becomes very small. Any graph that has a bond length
greater than the maximum can be filtered based on that information. Using this
information to speed up the global minimization has not yet been fruitful, but
most time has been spent improving the algorithms in preparation of this paper.

The second improvement is the topic of recent research, a pair of algorithms use
detail from the potential to optimize a single node with the highest potential.
Using this information, we can avoid attempting to minimize any other potentials.
This works especially well with graphs that have a small number of flaws while
the rest of the graph is minimized. It is possible to make this algorithm ergodic
at a reasonable cost: all valid values that satisfy the constraints of molecular
potential in two dimensions can be very small. A2 is one of the two algorithms
which is available in Small Wide World.

The third improvement would be to attempt to implement Particle-Mesh Ewald
(PME). Particle-Mesh Ewald has proven effective at providing a faster imple-
mentation of Lennard-Jones potential calculation in 3 dimensions. This lattice

38

equation is very complex and not well described. A significant improvement
in minimization would mean that the average speed of 10 steps of global mini-
mization on a large graph would reduce from 100 seconds to 10 seconds. While
this is still unacceptable for real-time applications, it is acceptable for many
applications such as visualizing a graph in design time.

References

[1] T.M. Fruchterman, E.M. Reingold, Graph drawing by force-directed place-
ment, Software: Practice and Experience. 21 (1991) 1129-1164.

[2] E.W. Dijkstra, A note on two problems in connexion with graphs, Numerische
Mathematik. 1 (1959) 269-271.

[3] S. Lifson, A. Warshel, Consistent force field for calculations of conformations,
vibrational spectra, and enthalpies of cycloalkane and n-alkane molecules, The
Journal of Chemical Physics. 49 (1968) 5116-5129.

[4] J.L. Miller, Chemistry nobel honors computer simulation of biomolecules,
Physics Today. 66 (2013) 13.

[5] M. Levitt, S. Lifson, Refinement of protein conformations using a macromolec-
ular energy minimization procedure, Journal of Molecular Biology. 46 (1969)
269-279.

[6] T. Schlick, Molecular modeling and simulation: An interdisciplinary guide:
An interdisciplinary guide, Springer Science & Business Media, 2010.

[7] R.H. Byrd, P. Lu, J. Nocedal, C. Zhu, A limited memory algorithm for bound
constrained optimization, STAM Journal on Scientific Computing. 16 (1995)
1190-1208.

[8] C. Zhu, R.H. Byrd, P. Lu, J. Nocedal, Algorithm 778: L-bFGS-b: Fortran
subroutines for large-scale bound-constrained optimization, ACM Transactions
on Mathematical Software (TOMS). 23 (1997) 550-560.

[9] J.L. Morales, J. Nocedal, Remark on “algorithm 778: L-bFGS-b: Fortran
subroutines for large-scale bound constrained optimization”, ACM Transactions
on Mathematical Software (TOMS). 38 (2011) 7.

[10] E. Jones, T. Oliphant, P. Peterson, others, SciPy: Open source scientific
tools for Python, (2001-2001--).

[11] D. Wales, Energy landscapes: Applications to clusters, biomolecules and
glasses, Cambridge University Press, 2003.

[12] D.J. Wales, J.P. Doye, Global optimization by basin-hopping and the lowest
energy structures of lennard-jones clusters containing up to 110 atoms, The
Journal of Physical Chemistry A. 101 (1997) 5111-5116.

39

[13] Z. Li, H.A. Scheraga, Monte carlo-minimization approach to the multiple-
minima problem in protein folding, Proceedings of the National Academy of
Sciences. 84 (1987) 6611-6615.

[14] D.J. Wales, H.A. Scheraga, Global optimization of clusters, crystals, and
biomolecules, Science. 285 (1999) 1368-1372.

[15] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller,
Equation of state calculations by fast computing machines, The Journal of
Chemical Physics. 21 (1953) 1087-1092.

[16] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, others, Optimization by simmulated
annealing, Science. 220 (1983) 671-680.

[17] M.P. Allen, D.J. Tildesley, Computer simulation of liquids, Oxford university
press, 1989.

[18] M. Levitt, M. Hirshberg, R. Sharon, V. Daggett, Potential energy function
and parameters for simulations of the molecular dynamics of proteins and nucleic
acids in solution, Computer Physics Communications. 91 (1995) 215-231.

[19] W.L. Jorgensen, J. Tirado-Rives, Monte carlo vs molecular dynamics for
conformational sampling, The Journal of Physical Chemistry. 100 (1996) 14508
14513.

[20] E.R. Gansner, E. Koutsofios, S.C. North, K.-P. Vo, A technique for drawing
directed graphs, IEEE Transactions on Software Engineering. 19 (1993) 214-230.

40

	Small Wide World
	Introduction
	The Small Wide World Potential (V_{SmallWideWorld})
	Branch Sort
	Metropolis

	Loop Sort
	Grid Sort
	Lattice Sort
	Spiral Sort
	Right Loop Sort
	Fruchterman-Reingold Sort (Force-Directed Placement)
	Future work

	References

